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Abstract
In this paper, we study the quenching behaviour for a system of two reaction–
diffusion equations arising in the modelling of the spatio-temporal interaction
of prey and predator populations in fragile environment. We first provide some
sufficient conditions on the initial data to have finite time quenching. Then we
classify the initial data to distinguish type I quenching and type II quenching,
by introducing a delicate energy functional along with the help of some a priori
estimates. Finally, we present some results on the quenching set. It can be a
singleton, the whole domain, or a compact subset of the domain.

Mathematics Subject Classification: 35K45, 35K57, 35K55

1. Introduction

We consider in this work the following reaction–diffusion systemut − uxx = −v

vt − vxx = −r
v2

u

(1.1)

posed for x ∈ (0, ∞) and t ∈ (0, T ) and supplemented with homogeneous Neumann boundary
condition and initial condition{

ux(t, 0) = vx(t, 0) = 0, t ∈ (0, T )

(u(0, x), v(0, x)) = (u0(x), v0(x)), x � 0,
(1.2)

where u0 and v0 are two positive and smooth functions on [0, ∞).
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System (1.1) is a simplification close to quenching of a more complex reaction–diffusion
system proposed by Gaucel and Langlais [7]. The complete system they proposed reads with
normalized parameters as{

ut − d�u = ruu(1 − u) − v

vt − �v = rv
(

1 − v

u

)
.

(1.3)

The above system of equations models the spatio-temporal interaction of prey and predator
populations in a fragile environment. More specifically, u (respectively v) denotes the spatial
density of prey (respectively predator). In the absence of predator (namely v ≡ 0), the prey
density follows the usual logistic growth with parameter ru � 0 and a normalized carrying
capacity. On the other hand, the equation for the density of predators follows a logistic
dynamics with a varying carrying capacity proportional to the density of prey. From a modelling
point of view, this specific form allows the density of predator to become high when the food
is unlimited (u → ∞). It also increases the competition between predators when the density
of prey is low (u → 0). In that case, the carrying capacity of predators goes to zero and leads
to the extinction of the population of predators. We refer to Courchamp and Sugihara in [2]
for more details on the derivation of the model and applicability for cat and bird dynamics in
an insular environment.

The main property of the above system is its ability to exhibit a finite time and simultaneous
extinction of both species. The dynamical property of the kinetic system, namely the underlying
ordinary differential equation, has been well studied. Firstly introduced by Courchamp
and Sugihara [2] and Courchamp et al [3], it has been further investigated by Gaucel and
Langlais [7]. Extensions to the reaction–diffusion system (1.3) posed on a bounded domain
and supplemented together with the zero flux boundary condition have been provided in [7] in
the equi-diffusional case, namely d = 1. One can also note that when the quenching occurs
for (1.3) then the ratio v/u blows up in finite time. This remark allows us to introduce (1.1)
as a formal simplification of (1.3) close to quenching. Indeed, close to quenching, u becomes
negligible with respect to v leading to (1.1).

The aim of this paper is to consider (1.1) and to give some information on the quenching
behaviour. Since the parameter r > 0 plays a crucial role on the quenching behaviour of (1.3)
but also (1.1), throughout this work, we always assume that the parameter r satisfies 0 < r < 1.
Let us, however, mention that parameter ru in (1.3) also plays an important role. The logistic
dynamics for prey acts in favour of an increase in the prey density and therefore acts against the
quenching phenomenon. This balance may induce temporal and spatio-temporal oscillations
that become difficult to control and to analyse. This is the reason why we will restrict our
analysis to the simplified system (1.1).

In order to fulfil this analysis, we allow the initial data to be unbounded when x → ∞.
More precisely we will assume that

Assumption 1.1. Function (u0, v0) ∈ C2([0, ∞))2 is assumed to satisfy

(i) u′
0(0) = v′

0(0) = 0.
(ii) There exists ε > 0 and k > 0 such that

ε � u0(x) � k(1 + x2), ∀x ∈ [0, ∞).

(iii) For each x � 0, v0(x) � 0 and there exists M > 0 such that for all x � 0:

P0(x) := v0(x)

u0(x)
� M.
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Here we allow the initial data to be unbounded. This property will be used in the following to
derive the existence of type II quenching (see corollaries 1.9 and 1.10). See also remark 1.11.

Recall that from the usual existence result for reaction–diffusion systems, under
assumption 1.1, system (1.1)–(1.2) has a unique classical maximal solution (u, v) ≡
(u, v)(t, x) on a maximal time interval [0, T ) with T > 0 such that

(u, v) ∈ C1,2 ([0, T ) × [0, ∞))2 , u > 0, v � 0,

and if T < ∞ then

lim inf
t↗T

inf
x�0

u(t, x) = 0. (1.4)

The property (1.4) with T < ∞ is referred to as finite time quenching and one can introduce
the so-called quenching set Q = Q(u0, v0) defined by

Q := {x � 0| ∃{(tn, xn)}n�0 ⊂ [0, T ) × [0, ∞) such that

lim
n→∞(tn, xn) = (T , x) and lim

n→∞ u (tn, xn) = 0}.

Definition 1.2. Suppose that finite time quenching occurs at time T . Then it is called type I
quenching if

lim inf
t↗T

(T − t)−
1

1−r inf
x�0

u(t, x) > 0.

Otherwise, it is referred to as type II quenching.

Then the main results of this work are the following:

Theorem 1.3. Let assumption 1.1 be satisfied. Assume moreover that there exists λ > 0
such that

λu0(x) = v0(x), ∀x � 0.

Then system (1.1)–(1.2) exhibits finite time quenching. It is of type I and the quenching set Q
satisfies Q = [0, ∞).

For more general initial data, let us introduce the following assumption:

Assumption 1.4. We assume that (u0, v0) ∈ C2([0, ∞))2 such that infx�0 u0(x) > 0, v0 
≡ 0,
v0(x) � 0 for all x � 0 and together with the compatibility condition at x = 0, that is
u′

0(0) = v′
0(0) = 0. Finally we assume that

u0(x) = O(x2) when x → ∞ and P0 := v0/u0 is bounded.

Then the following result holds true:

Theorem 1.5. Let assumption 1.4 be satisfied. We assume furthermore that

u′
0(x)2 � 2u0(x)v0(x) and P ′

0(x) � 0 ∀x ∈ [0, ∞). (1.5)

Then system (1.1)–(1.2) exhibits finite time quenching.

Next, in order to derive the behaviour of type I quenching, let us introduce the following
set of assumption:
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Assumption 1.6. Let (u0, v0) be two given functions satisfying assumption 1.1. Furthermore,
assume that

(i) For all x � 0, u′
0(x) � 0, v′

0(x) � 0 and P ′
0(x) � 0.

(ii) There exist two constants k1 > 0 and k2 > 0 such that for all x � 0:

v0(x) � k1 (u0(x))r ,
(
u′

0(x)
)2 � k2u0(x)1+r . (1.6)

Then we have the following information on the quenching behaviour.

Theorem 1.7. Let assumption 1.6 be satisfied. Assume furthermore that the solution has a
finite time quenching at time T . If the quenching is of type I, then the following behaviour
holds true:

lim
t↑T

[P(t, x)(T − t)] = 1/(1 − r),

lim
t↑T

[ux(t, x)(T − t)−1/(1−r)+1/2] = 0,

lim
t↑T

[vx(t, x)(T − t)−r/(1−r)+1/2] = 0,

uniformly on {(t, x) | 0 � x � L
√

T − t} for any L > 0, wherein we have set
P(t, x) := v(t, x)/u(t, x).

As a consequence of theorem 1.7, we are able to provide a class of initial data leading to
type II quenching. To do so let us consider the following assumption.

Assumption 1.8. Let (u0, v0) be two given functions satisfying assumption 1.6. We assume
furthermore that

x2v0(x) � 2

1 − r
u0(x), ∀x � 0.

Then the following results hold true.

Corollary 1.9. Let assumption 1.8 be satisfied. If the solution of system (1.1)–(1.2) exhibits
finite time quenching at time T , then the quenching occurs at the single point x = 0, namely
Q = {0}, and it is type II quenching.

Corollary 1.10. Let us consider the following initial data

u0(x) = α + βx2, v0(x) ≡ κ,

for some constants α > 0, β > 0 and κ > 0. If κ ∈ [2β, 2β/(1 − r)], then the corresponding
solution (u, v) of system (1.1)–(1.2) exhibits finite time quenching at time T , the quenching set
satisfies Q = {0} and the quenching is of type II.

Remark 1.11. For technical reasons, the aforementioned results require the initial data (at
least for u) to be unbounded. From an applicative point of view, this assumption can be
understood by looking at the ratio P0 := v0

u0
. Indeed, the inequality in assumption 1.8 can be

re-written as P0(x) � 2
1−r

1
x2 . This means that, close to infinity, the prey is abundant while

the density of predator is very low. For another technical reason, we require u0 and v0 to be
increasing to enforce u0 to be unbounded. We expect to extend the above results to the case
when u0 is bounded and v0 is compactly supported. This situation corresponds to the localized
introduction of predators into the environment.
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Before going further, let us comment on some other recent works concerning systems (1.1)
and (1.3). From a biological point of view, the quenching (especially one point quenching)
does not mean the global extinction of the species. It is therefore relevant to deal with the
continuation of the solution beyond quenching. In this direction, let us mention the recent work
of Ducrot and Langlais [5] who deal with the existence of a solution for the following system
of equations posed on some bounded domain together with Neumann boundary conditions:{

ut − �u = ruu(1 − u) − v1{u>0}
vt − �v = rv

(
1 − v

u
1{u>0}

)
.

The existence of globally defined classical solution (with the right-hand side in some suitable
Lp space with p > 1) for the above problem is proved for a large class of initial data (possibly
singular), but uniqueness or non-uniqueness of solutions is still an open problem. We refer
to [5] for more details. Some numerical simulations of this problem (see [1]) suggest that
the formation as well as the dynamics of the dead-core can exhibit a very complex dynamics
including pattern formations and regularization effect after quenching. This complex dynamics
seems to be essentially due to parameter ru that increases the prey population. In the absence
of vital dynamics for the prey population, namely ru = 0, a first study of the travelling
solutions for the above problem, recently provided by Ducrot and Langlais [4], allows us to
expect a very simple dynamics for the dead-core in that case. More precisely, we expect that
under some suitable assumptions, the dead-core arising during the predator invasion process
would asymptotically expand with a constant speed and without any regularization effect after
quenching.

Coming back to (1.1), note that most of the above mentioned results will be obtained using
some nice properties of the function P := v/u that satisfies the following equations:

Pt(t, x) = Pxx(t, x) + 2
ux(t, x)

u(t, x)
Px(t, x) + (1 − r)P (t, x)2,

Px(t, 0) = 0,

P (0, x) = P0(x) := v0(x)

u0(x)
, ∀x � 0.

(1.7)

The study of singularity formation (e.g. blow-up, quenching, dead-core, etc) in parabolic
problems has attracted a lot of attention during the past years. Before 1994, it was only found
that the singularity is always of self-similar type (or, type I singularity). Here the self-similarity
means solutions are invariant under certain scaling of independent and dependent variables.
The works by Herrero and Velazquez [13, 14] provide the first example of non-self-similar
type singularity for a blow-up problem. We call such a singularity type II. This result was later
extended by Mizoguchi [17–20]. Moreover, in [21], Mizoguchi and Senba studied a system
of parabolic-elliptic equations which exhibits a type II singularity.

For the dead-core problem, it was shown in [12] that the dead-core rate is of type II. Unlike
in the blow-up problem where we need to impose higher spatial dimensions, here the spatial
domain is only required to be 1D. Later a fast diffusion equation was also studied to exhibit the
type II singularity (see [9]). Another example of type II singularity is found for the gradient
blow-up. We refer the reader to the works [8, 15, 16] and the references cited therein. To the
authors’ knowledge, this work provides the first example of type II quenching.

It is interesting to remark that the singularity temporal asymptotic rates are not unique for
the type II singularity. Its rate depends on the initial datum. In contrast, there is a unique rate
for the self-similar type I singularity. It is a very interesting question to determine the exact
rates for any given initial data when type II singularity occurs. For this topic, we refer the
reader to [10, 14, 20]. But, the exact quenching rates for our problem are left for open.
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This work is organized as follows: section 2 is devoted to providing sufficient conditions
on the initial data to have finite time quenching and also deriving some preliminary estimates
of the solutions. In section 3, we first investigate the quenching behaviour of the solution under
the type I quenching assumption. This corresponds to the proof of theorem 1.7. Then two
results on type II quenching are proved, namely, corollaries 1.9 and 1.10. Finally, section 4
gives some conditions for finite time quenching to occur with a compact quenching set.

2. Finite time quenching and preliminary estimates

In this section, we will give sufficient conditions on the initial data u0 and v0 so that system
(1.1)–(1.2) exhibits finite time quenching. More specifically, we aim to prove theorems 1.3
and 1.5.

First, we prove theorem 1.3.

Proof of theorem 1.3. The proof of this result relies on (1.7). Indeed, if P0 ≡ λ, then
P(t, x) ≡ P(t) and therefore the blow-up time T and P can be explicitly written as

T = 1

λ(1 − r)
, P (t) = λT

T − t
.

Thus the u-equation becomes

ut − uxx = − λT

T − t
u, ux(t, 0) = 0, u(0, x) = u0(x).

Due to assumption 1.1, there exists η > 0 such that

ηT
1

1−r � u0(x), ∀x � 0,

and using the comparison principle, one obtains that

η(T − t)
1

1−r � u(t, x), ∀x � 0, t ∈ [0, T ).

The above inequality implies type I quenching.
It remains to prove that the quenching set Q = [0, ∞). To prove this, let us note that

u(t, x)P (t) = v(t, x) and, by (ii) of assumption 1.1, we have

v0(x) = λu0(x) � λk(1 + x2), ∀x � 0.

It follows that there exists K > 0 such that

v(t, x) � K√
t

∫
R

e− (x−y)2

4t (1 + y2) dy, ∀t ∈ (0, T ), x � 0. (2.1)

Therefore, we have for each t ∈ (0, T ) and x � 0:

u(t, x) � (T − t)
K̃√

t

∫
R

e− (x−y)2

4t (1 + y2) dy

for some constant K̃ > 0. This implies that Q = [0, ∞) and thereby completes the proof of
theorem 1.3. �

Next, we rewrite system (1.1)–(1.2) in terms of the variables Q := ux/u and P . Then
system (1.1)–(1.2) becomes

Qt − Qxx = −Px + 2QQx, (2.2)

Pt − Pxx = 2QPx + (1 − r)P 2, (2.3)
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posed for x � 0 and t ∈ (0, T ) together with

Q(t, 0) = 0, Px(t, 0) = 0,

Q(0, x) = Q0(x) := u′
0(x)

u0(x)
, P (0, x) = P0(x).

Then the following lemma holds true.

Lemma 2.1. The set � := {(Q, P ) ∈ R × [0, ∞) : G(Q, P ) := Q2 − 2P � 0} is positively
invariant under (2.2)–(2.3).

Proof. The proof of this lemma directly follows from the results on invariant region in the
book of Smoller [23] (see theorems 14.7 and 14.11).

To do so, let us introduce for each Z = (Q

P

) ∈ R
2 the following functions

M(Z) =
(

2Q −1
0 2Q

)
, f (Z) =

(
0

(1 − r)P 2

)
,

so that system (2.2)–(2.3) is re-written in a vectorial form as

Zt − Zxx = M(Z)Zx + f (Z).

Then for each Z0 = (Q0, P0)
T such that G(Q0, P0) = 0, one has

dG(Z0) = 2(Q0, −1),

and we have

dG(Z0)M(Z0) = 2Q0dG(Z0) and dG(Z0)f (Z0) � 0.

Hence the result follows. �
The following lemma is concerned with the monotonicity of solutions.

Lemma 2.2. If P ′
0(x) � 0 for all x ∈ [0, ∞) then

Px(t, x) � 0, ∀t ∈ (0, T ), x � 0.

If furthermore u′
0(x) � 0 (respectively v′

0(x) � 0) then

ux(t, x) � 0 (respectively vx(t, x) � 0), ∀t ∈ (0, T ), x � 0.

Remark 2.3. This lemma will be crucial in the following. Let us note that such a result seems
not to be true when dealing with system (1.3) with ru > 0.

Proof. From (1.7), the map w = Px satisfies
wt − wxx = 2Qwx + 2Qxw + 2(1 − r)Pw,

w(t, 0) = 0,

w(0, x) = P ′
0(x).

Then the comparison principle can be applied to obtain the first result.
If we furthermore assume that u′

0 � 0, then due to the u-equation in (1.1), we obtain that
z = ux satisfies

zt − zxx = −Pxu − Pz � −Pz,

z(t, 0) = 0,

z(0, x) = u′
0(x),

and the assertion ux � 0 follows using the comparison principle. The case for v is similar and
the lemma is proved. �
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We are now ready to prove theorem 1.5.

Proof of theorem 1.5. As a consequence of (1.5), lemma 2.1 and lemma 2.2, we have Px � 0
and Q �

√
2P 1/2. Hence

Pt − Pxx = 2QPx + (1 − r)P 2 � 23/2P 1/2Px + (1 − r)P 2.

This implies that for some constant a > 0

Pt − Pxx − a(P 3/2)x − (1 − r)P 2 � 0.

We are now able to apply the comparison principle together with theorem 37.4 in [22] to derive
that P exhibits a finite time blow-up at some time T . Moreover since Px � 0, one obtains that

lim inf
t↗T

P (t, 0) = ∞.

Recall that u = v/P . Then it follows from (2.1) that

lim inf
t↗T

u(t, 0) = 0.

The theorem is proved. �

As a direct consequence of theorem 1.5, one concludes the finite time quenching for system
(1.1)–(1.2) in the two following situations:

u0 ≡ α > 0 (for some constant α) and v0 is decreasing;
and

u0(x) = α + βx2, v0(x) ≡ κ > 0,

wherein α > 0, β > 0 and κ > 0 are constants such that 2β � κ .
We continue this section by deriving some basic estimates when quenching occurs. More

precisely, we prove the following upper bound for the quenching rate.

Lemma 2.4 (Upper bound for the quenching rate). Let u0, v0 be a couple of initial data
satisfying assumption 1.4 such that u′

0 � 0, P ′
0 � 0 and

v0

ur
0

∈ L∞(0, ∞). (2.4)

Assume that the corresponding solution (u, v) of system (1.1)–(1.2) exhibits the finite time
quenching at time T > 0. Then there exists some constant K > 0 such that

inf
x�0

u(t, x) � K(T − t)
1

1−r , (2.5)

inf
x�0

v(t, x) � K(T − t)
r

1−r , (2.6)

sup
x�0

P(t, x) � K−1(T − t)−1 (2.7)

for t ∈ [0, T ).

The proof of this lemma relies on the following estimate.

Lemma 2.5. Let u0, v0 be a couple of initial data satisfying assumption 1.4 such that u′
0 � 0.

P ′
0 � 0 and (2.4) holds. Let (u, v) be the corresponding solution of system (1.1)–(1.2) on

(0, T ). Then there exists some constant M > 0 such that

v(t, x) � Mur(t, x), ∀x � 0, t ∈ [0, T ).
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Proof. Set J (t, x) = v(t, x) − Mu(t, x)r wherein M > 0 denotes some constant such that
v0(x) � Mur

0(x) for all x � 0. Then J satisfies

Jt = Jxx − r
v

u
(v − Mur) + Mr(r − 1)ur−2u2

x.

Since r < 1, we have

Jt � Jxx − r
v

u
J in (0, T ) × (0, ∞), Jx = 0 at x = 0,

and from the definition of M we have J (0, x) � 0. Thus one gets that J � 0 and the result
follows. �

Proof of lemma 2.4. First, from lemma 2.2, one obtain that for each t ∈ (0, T )

sup
x�0

P(t, x) = P(t, 0), inf
x�0

u(t, x) = u(t, 0).

As a consequence, we obtain that Pxx(t, 0) � 0 and uxx(t, 0) � 0 so that

ut (t, 0) � −v(t, 0),

Pt (t, 0) � (1 − r)P 2(t, 0).

From the second inequality, one obtains that for some constant
1

(1 − r)(T − t)
� P(t, 0).

Thus (2.7) is derived.
Next, from lemma 2.5, there exists some constant M > 0 such that v � Mur . Thus

ut (t, 0) � −v(t, 0) � −Mu(t, 0)r .

Integrating this inequality from t to T leads us to

u(t, 0) � K(T − t)
1

1−r

for some positive constant K . This gives (2.5). Finally, since v � Mur , the result (2.6) follows
and the lemma is proved. �

3. Quenching behaviour

In this section, we shall study the quenching behaviour of the solution (u, v) of problem (1.1)–
(1.2) and give a proof of theorem 1.7. Let T be the quenching time of (u, v). Then T is also
the blow-up time of P . For notational convenience, we let QT := (0, T ) × (0, ∞). Also,
throughout this section, let assumption 1.6 be satisfied.

Recall that u is of type I quenching, if

lim inf
t↗T

(T − t)−
1

1−r u(t, 0) > 0.

Before studying the behaviour of the solution, let us first prove the following estimate.

Lemma 3.1. Let assumption 1.6 be satisfied. Then there exists some constant K > 0 such that

ux(t, x) � Ku(t, x)
1+r

2 , (t, x) ∈ [0, T ) × [0, ∞), (3.1)

u(t, x) �
(

u(t, 0)
1−r

2 +
1 − r

2
Kx

) 2
1−r

, (3.2)

v(t, x) � k1

(
u(t, 0)

1−r
2 +

1 − r

2
Kx

) 2r
1−r

, (3.3)

where k1 > 0 is the constant defined in assumption 1.6.
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Proof. Following [6], we consider the map J = 1
2u2

x − Ku1+r wherein K > k2
2 is some

constant that will be specified later on. Then we have

Jt = utxux − K(1 + r)urut ,

Jx = uxxux − K(1 + r)urux,

Jxx = uxxxux + u2
xx − K(1 + r)rur−1u2

x − K(1 + r)uruxx.

Thus we obtain that

Jt − Jxx = (ut − uxx)xux − K(1 + r)ur(ut − uxx) − u2
xx + Kr(1 + r)ur−1u2

x

= −vxux + K(1 + r)urv −
(

Jx

ux

+ K(1 + r)ur

)2

+ Kr(1 + r)ur−1
(
2J + 2Ku1+r

)
� K(1 + r)δu2r − 2K(1 + r)ur

ux

Jx +2Kr(1+r)ur−1J +2K2r(1+r)u2r −K2(1+r)2u2r

= −2K(1 + r)ur

ux

Jx + 2Kr(1 + r)ur−1J + Ku2r [(1 + r)δ + K(1 + r) (r − 1)].

Recalling that r ∈ (0, 1), let K be sufficiently large so that

(1 + r)δ + K(1 + r)(r − 1) < 0,

and since K > k2
2 , recalling assumption 1.6, one has 1

2u2
0x � Ku1+r

0 on [0, ∞). Then together
with such a choice of K , the function J satisfies

Jt − Jxx +
2K(1 + r)ur

ux

Jx − 2Kr(1 + r)ur−1J � 0.

Since J (t, 0) � 0, the comparison principle implies that J � 0. Hence (3.1)
follows. Integrating (3.1) and using lemma 2.5, we obtain (3.2) and (3.3). The lemma is
proved. �

To study the quenching behaviour, we introduce the following self-similar change of
variables

s = − log(T − t), y = x(T − t)−1/2,

and the change of unknown functions

u(t, x) = (T − t)σ+1U(s, y), v(t, x) = (T − t)σV (s, y), P (t, x) = W(s, y)/(T − t),

wherein we have set σ = r/(1 − r). This transformation leads us to the following system of
equations

Us = Uyy − y

2
Uy − V + (σ + 1)U, (3.4)

Vs = Vyy − y

2
Vy − r

V 2

U
+ σV, (3.5)

Ws = Wyy − y

2
Wy + 2

Uy

U
Wy + (1 − r)W 2 − W (3.6)

defined on the domain

D = {(s, y); s0 := − log T < s < ∞, y > 0} = (s0, ∞) × (0, ∞)

together with the boundary conditions

(Uy, Vy, Wy)(s, 0) = (0, 0, 0), (3.7)

for all s > s0.
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Recall from lemmas 2.4 and 3.1 that

u(t, x) � K
(
(T − t)

1
2 + x

) 2
1−r

, v(t, x) � K
(
(T − t)

1
2 + x

) 2r
1−r

, (t, x) ∈ QT ,

for some constant K > 0 large enough. Then we have

U(s, y) � K(1 + y)
2

1−r , V (s, y) � K(1 + y)
2r

1−r in D. (3.8)

Then we have the following result on the asymptotic behaviour.

Proposition 3.2. Assume that u is of type I quenching. Then

lim
s→∞ W(s, y) = 1

1 − r
, lim

s→∞ Uy(s, y) = lim
s→∞ Vy(s, y) = 0,

locally uniform with respect to y ∈ [0, ∞).

Proof. Under the type I quenching assumption for u, one obtains that there exists m > 0
such that

m � U(s, 0) � U(s, y), ∀(s, y) ∈ D. (3.9)

Then due to (3.8), W = V/U , lemma 2.2 and (2.7), there exist 0 < k1 < k2 < ∞ such that

W(s, y) � W(s, 0) � K

m
:= k2, ∀(s, y) ∈ D, and k1 � W(s, 0), ∀s > s0.

(3.10)

Recall that r ∈ (0, 1). Take α ∈ (1/(1 − r), ∞), β < 0 and consider the map

V[U, V ](s) =
∫ ∞

0
ρ(y)V (s, y)αU(s, y)β dy, ρ(y) := exp(−y2/4).

Note that such a functional is well defined due to (3.8) and (3.9). Then for a solution (U, V )

of (3.4) and (3.5) we compute

dV[U, V ](s)

ds
= −

∫ ∞

0
ρ(y){α(α − 1)V α−2UβV 2

y + β(β − 1)V αUβ−2U 2
y

+2αβV α−1Uβ−1UyVy} dy + (αr + β)

∫ ∞

0
ρ(y)

(
V αUβ

1 − r
− V α+1Uβ−1

)
dy.

By choosing β = −rα, we obtain that

dV[U, V ](s)

ds
= −

∫ ∞

0
ρ(y){α(α − 1)V α−2UβV 2

y

+β(β − 1)V αUβ−2U 2
y + 2αβV α−1Uβ−1UyVy} dy.

Moreover, since α + β = α(1 − r) > 1, we conclude that

dV[U, V ](s)

ds
� 0 with

dV[U, V ](s)

ds
= 0 when Uy(s, ·) ≡ Vy(s, ·) ≡ 0.

Next, we take any sequence sn → ∞ and consider the sequence of maps

Un(s, y) := U(s + sn, y), Vn(s, y) := V (s + sn, y).

Note that the equation (3.5) can be re-written by

Vs = Vyy − y

2
Vy − rWV + σV .
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Due to parabolic estimates, using (3.8) and (3.10), up to a subsequence, one may assume that
Un and Vn converges in the topology of C

1,2
loc (R × [0, ∞)) towards some positive functions,

denoted by (Û , V̂ ) ∈ C1,2(R × [0, ∞)), a complete orbit of the problem

Us = Uyy − y

2
Uy − V + (σ + 1)U, (s, y) ∈ R × (0, ∞),

Vs = Vyy − y

2
Vy − r

V 2

U
+ σV, (s, y) ∈ R × (0, ∞),

with Ûy(s, 0) = V̂y(s, 0) = 0 for all s ∈ R and such that

dV[Û , V̂ ](s)

ds
= 0, ∀s ∈ R.

This implies that

Ûy(s, ·) ≡ V̂y(s, ·) ≡ 0.

Thus (Û , V̂ ) ≡ (Û , V̂ )(s) is a bounded complete orbit of
Us = −V + U/(1 − r), s ∈ R,

Vs = −r
V 2

U
+

rV

1 − r
, s ∈ R.

(3.11)

By differentiating the ratio Ŵ := V̂ /Û with respect to s and using (3.11), we can deduce
that Ŵ satisfies

Ws = (1 − r)W 2 − W, s ∈ R.

It follows from the uniqueness theory of ODE that Ŵ is strictly monotone, if Ŵ is not a constant
function. Then it is easy to check that the existence of a complete orbit is possible only if

0 < k1 � Ŵ (s) � 1

1 − r
, ∀s ∈ R. (3.12)

Now, if there exists s0 ∈ R such that Ŵ (s0) ∈ (0, 1
1−r

) then it is easy to see that

lim
s→∞ Ŵ (s) = 0. (3.13)

Indeed, by comparison argument, one obtains that Ŵ (s) � W(s) for all s � s0 wherein W is
defined by

W(s) = 1

1 − r + es−s0 1−(1−r)w(s0)

w(s0)

.

Hence (3.13) holds which violates (3.12). Thus we have that Ŵ (s) ≡ 1/(1 − r), which is
independent of the choice of {sn}. This completes the proof of the proposition. �

Returning to the original variables, we obtain theorem 1.7.
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As a direct corollary of theorem 1.7, one will prove corollaries 1.9 and 1.10. To do so let
us first prove the following result:

Lemma 3.3. Let assumption 1.6 be satisfied. If we furthermore assume that

P0(x) � 2

1 − r

1

x2
, ∀ x > 0,

then

P(t, x) � 2

1 − r

1

x2
, ∀ t ∈ (0, T ), ∀x > 0.

Proof. Consider the map H(t, x) = u(t, x) − kx2v(t, x) with k = 1−r
2 . Then one has

Ht = ut − kx2vt ,

Hx = ux − 2kxv − kx2vx,

Hxx = uxx − 2kv − 4kxvx − kx2vxx,

so that we obtain

Ht − Hxx = (ut − uxx) − kx2(vt − vxx) + 2kv + 4kxvx

= −v + rkx2 v2

u
+ 2kv + 4kxvx

= −r
v

u
H + (r − 1 + 2k)v + 4kxvx.

Since vx � 0 and r − 1 + 2k = 0, one obtains that

Ht − Hxx + r
v

u
H � 0.

Since H(t, 0) � 0 and, by assumption,

H(0, x) = u0(x) − kx2v0(x) � 0,

the result follows from the comparison principle. �

We are now able to complete the proof of corollaries 1.9 and 1.10. Using lemma 3.3,
one obtains that Q = {0}, if finite time quenching occurs. Furthermore, using the self-similar
transformation, one obtains from lemma 3.3 that

W(s, y) � C

y2
, ∀s > s0, y � 0,

for some constant C > 0. The above inequality prevents W(s, y) from locally uniformly
tending to 1

1−r
as s → ∞. This completes the proof of corollary 1.9.

Finally, corollary 1.10 directly follows from combining theorem 1.5 together with
corollary 1.9.

4. Quenching set

In this section, we shall study the quenching set under the following assumptions:

(i) The limits N1 := limx→∞ u0(x) and N2 := limx→∞ v0(x) exist such that 0 < N1 < ∞
and 0 < N2 < ∞.

(ii) There hold u′
0(x) � 0 and P ′

0(x) � 0 for all x � 0.
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We will prove the following result:

Proposition 4.1. Under the above assumptions, system (1.1)–(1.2) has a finite time quenching
at time T such that

0 < T � T0(N1, N2) := 1

1 − r

N1

N2
.

Furthermore, the quenching set Q is compact if and only if T < T0(N1, N2).

Proof. Using the above monotonic assumptions (ii) and lemma 2.2, one obtains that for each
t ∈ [0, T ), where T is the maximal time of existence of the solution, (u, v), the solution
satisfies

sup
x�0

u(t, x) = lim
x→∞ u(t, x), t ∈ (0, T ). (4.1)

Consider now the associated kinetic system

Ut = −V, Vt = −r
V 2

U
. (4.2)

Note that (V/Ur)t = 0. Then it is easy to see that the solution of (4.2) with the initial condition
(U, V )(0) = (N1, N2) is given by

U(t) =
[
N1−r

1 − (1 − r)
N2t

Nr
1

]1/(1−r)

, V (t) = N2U
r(t)

Nr
1

, t ∈ [0, T0),

where

T0 := T0(N1, N2) = 1

1 − r

N1

N2
.

In particular, U(t) and V (t) quench at the finite time T0.
To proceed further, we apply [11, theorem 4.1] to system (1.1)–(1.2) with an = 4n and

rn = n to obtain that

lim
x→∞ u(t, x) = U(t), lim

x→∞ v(t, x) = V (t)

for all t ∈ [0, min{T , T0}). It is clear that T � T0. Moreover, due to (4.1), when T = T0, we
have the total quenching, i.e., Q = [0, ∞).

On the other hand, the quenching set Q is compact, if T < T0. Indeed, recalling that
v0 is bounded, one obtains that v ∈ L∞((0, T ) × (0, ∞)). Note that U(t) is decreasing in
t ∈ (0, T ). As a consequence of parabolic estimates one obtains that

lim
x→∞ u(t, x) = U(t) uniformly with respect to t ∈ [T/2, T ).

Since T < T0, U(T ) > 0 and so there exists M > 0 large enough such that

u(t, x) � U(T )/2, ∀ t ∈ [T/2, T ), x � M.

Thus the result follows. �
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